Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645100

RESUMO

Across all electrical stimulation (neuromodulation) domains, conventional analysis of cell polarization involves two discrete steps: i) prediction of macroscopic electric field, ignoring presence of cells and; ii) prediction of cell polarization from tissue electric fields. The first step assumes that electric current flow is not distorted by the dense tortuous network of cell structures. The deficiencies of this assumption have long been recognized, but - except for trivial geometries - ignored, because it presented intractable computation hurdles. We leverage: i) recent electron microscopic images of the brain that have made it possible to reconstruct microscopic brain networks over relatively large volumes and; ii) a charge-based formulation of boundary element fast multipole method (BEM-FMM) to produce the first multiscale stimulations of realistic neuronal polarization by electrical stimulation that consider current flow distortions by a microstructure. The dataset under study is a 250×140×90 µm section of the L2/L3 mouse visual cortex with 396 tightly spaced neurite cells and 34 microcapillaries. We quantify how brain microstructure significantly distorts the primary macroscopic electric field. Although being very local, such distortions constructively accumulate along the neuronal arbor and reduce neuronal activating thresholds by 0.55-0.85-fold as compared to conventional theory. Data availability statement: Post-processed cell CAD models (383), microcapillary CAD models (34), post-processed neuron morphologies (267), extracellular field and potential distributions at different polarizations (267×3), *.ses projects files for biophysical modeling with Neuron software (267×2), and computed neuron activating thresholds at different conditions (267×8) are made available online through BossDB, a volumetric open-source database for 3D and 4D neuroscience data. Significance statement: This study introduces a novel method for modeling perturbations of impressed electric fields within a microscopically realistic brain volume, including densely populated neuronal cells and blood microcapillaries. It addresses a limitation present across decades of macroscopic-level electromagnetic models for electrical stimulation. For the investigated brain volume, our model predicted a neural activation threshold reduction factor of 0.85-0.55 when compared to the macroscopic approach. The present study begins to bridge a long-recognized gap in our analysis of bioelectricity and provides a framework to evaluate (and compensate) for the adequacy of macroscopic models in brain stimulation and electrophysiology.

3.
Brain Stimul ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631548

RESUMO

BACKGROUND: Notwithstanding advances with low-intensity transcranial electrical stimulation (tES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. OBJECTIVE: To measure electric fields magnitude and their effects on neuronal firing rate of hippocampal neurons in freely moving rats, and to establish calibrated computational models of current flow. METHODS: Current flow models were calibrated on electric field measures in the motor cortex (n=2 anesthetized rats) and hippocampus. A Neuropixels 2.0 probe with 384 channels was used in an in-vivo rat model of tES (n = 4 freely moving and 2 urethane anesthetized rats) to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 µA of applied skull currents). RESULTS: Electric fields of as low as 0.35 V/m (0.25 - 0.47) acutely modulated average firing rate in the hippocampus. At these intensities, firing rate effects increased monotonically with electric field intensity at a rate of 11.5 % per V/m (7.2 - 18.3). For the majority of excitatory neurons, firing increased for soma-depolarizing stimulation and diminished for soma-hyperpolarizing stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. CONCLUSION: In awake animals, electric fields modulate spiking rate above levels previously observed in vitro. Firing rate effects are likely mediated by somatic polarization of pyramidal neurons. We recommend that all future rodent experiments directly measure electric fields to insure rigor and reproducibility.

4.
Front Neuroergon ; 5: 1236486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660589

RESUMO

Background: Hypertension is a global issue that is projected to worsen with increasingly obese populations. The central nervous system including the parts of the cortex plays a key role in hemodynamic stability and homeostatic control of blood pressure (BP), making them critical components in understanding and investigating the neural control of BP. This study investigated the effects of anodal transcranial direct current stimulation (tDCS) associated with aerobic physical exercise on BP and heart rate variability in hypertensive patients. Methods: Twenty hypertensive patients were randomized into two groups: active tDCS associated with aerobic exercise or sham tDCS associated with aerobic exercise. BP and heart rate variability were analyzed before (baseline) and after twelve non-consecutive sessions. After each tDCS session (2 mA for 20 min), moderate-intensity aerobic exercise was carried out on a treadmill for 40 min. Results: A total of 20 patients were enrolled (53.9 ± 10.6 years, 30.1 ± 3.7 Kg/m2). There were no significant interactions between time and groups on diastolic BP during wake, sleep, over 24 and 3 h after the last intervention. Heart rate variability variables showed no significant difference for time, groups and interaction analysis, except for HF (ms2) between groups (p < 0.05). Conclusion: Anodal tDCS over the temporal cortex associated with aerobic exercise did not induce improvements in BP and heart rate variability. Clinical trial registration: https://ensaiosclinicos.gov.br/rg/RBR-56jg3n/1, identifier: RBR-56jg3n.

5.
Ann Phys Rehabil Med ; 67(4): 101826, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479250

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) is a globally prevalent pathogen, with outbreaks occurring in tropical regions. Chronic pain is the main symptom reported and is associated with decreased mobility and disability. Transcranial direct current stimulation (tDCS) is emerging as a new therapeutic tool for chronic arthralgia. OBJECTIVE: To evaluate the effectiveness of 10 consecutive sessions of anodal tDCS on pain (primary outcome) in participants with chronic CHIKV arthralgia. Secondary outcomes included functional status, quality of life, and mood. METHODS: In this randomized, double-blind, placebo-controlled trial, 30 participants with chronic CHIKV arthralgia were randomly assigned to receive either active (n = 15) or sham (n = 15) tDCS. The active group received 10 consecutive sessions of tDCS over M1 using the C3/Fp2 montage (2 mA for 20 min). Visual analog scale of pain (VAS), health assessment questionnaire (HAQ), short-form 36 health survey (SF-36), pain catastrophizing scale, Hamilton anxiety scale (HAS), timed up and go (TUG) test, lumbar dynamometry, 30-s arm curl and 2-min step test were assessed at baseline, day 10 and at 2 follow-up visits. RESULTS: There was a significant interaction between group and time on pain (p = 0.03; effect size 95 % CI 0.9 (-1.67 to -0.16), with a significant time interaction (p = 0.0001). There was no interaction between time and group for the 2-minute step test (p = 0.18), but the groups differed significantly at day 10 (p = 0.01), first follow-up (p = 0.01) and second follow-up (p = 0.03). HAQ and SF-36 improved but not significantly. There was no significant improvement in mental health, and physical tests. CONCLUSION: tDCS appears to be a promising intervention for reducing pain in participants with chronic CHIKV arthralgia, although further research is needed to confirm these findings and explore potential long-term benefits. TRIAL REGISTRATION: Brazilian Registry of Clinical Trials (ReBEC): RBR-245rh7.

6.
ArXiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38351938

RESUMO

We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuro-modulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g., Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.

7.
Ann Biomed Eng ; 52(1): 89-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37115366

RESUMO

High-voltage pulsed electric fields (HV-PEF) delivered with invasive needle electrodes for electroporation applications is known to induce off-target blood-brain barrier (BBB) disruption. In this study, we sought to determine the feasibility of minimally invasive PEF application to produce BBB disruption in rat brain and identify the putative mechanisms mediating the effect. We observed dose-dependent presence of Evans Blue (EB) dye in rat brain when PEF were delivered with a skull mounted electrode used for neurostimulation application. Maximum region of dye uptake was observed while using 1500 V, 100 pulses, 100 µs and 10 Hz. Results of computational models suggested that the region of BBB disruption was occurring at thresholds of 63 V/cm or higher; well below intensity levels for electroporation. In vitro experiments recapitulating this effect with human umbilical vein endothelial cells (HUVEC) demonstrated cellular alterations that underlie BBB manifests at low-voltage high-pulse conditions without affecting cell viability or proliferation. Morphological changes in HUVECs due to PEF were accompanied by disruption of actin cytoskeleton, loss of tight junction protein-ZO-1 and VE-Cadherin at cell junctions and partial translocation into the cytoplasm. Uptake of propidium iodide (PI) in PEF treated conditions is less than 1% and 2.5% of total number of cells in high voltage (HV) and low-voltage (LV) groups, respectively, implying that BBB disruption to be independent of electroporation under these conditions. 3-D microfabricated blood vessel permeability was found to increase significantly following PEF treatment and confirmed with correlative cytoskeletal changes and loss of tight junction proteins. Finally, we show that the rat brain model can be scaled to human brains with a similar effect on BBB disruption characterized by electric field strength (EFS) threshold and using a combination of two bilateral HD electrode configurations.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Ratos , Animais , Barreira Hematoencefálica/metabolismo , Células Endoteliais/fisiologia , Transporte Biológico , Encéfalo , Junções Comunicantes/metabolismo
8.
Am J Psychiatry ; 181(2): 100-114, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38018143

RESUMO

Noninvasive brain stimulation technologies such as transcranial electrical and magnetic stimulation (tES and TMS) are emerging neuromodulation therapies that are being used to target the neural substrates of substance use disorders. By the end of 2022, 205 trials of tES or TMS in the treatment of substance use disorders had been published, with heterogeneous results, and there is still no consensus on the optimal target brain region. Recent work may help clarify where and how to apply stimulation, owing to expanding databases of neuroimaging studies, new systematic reviews, and improved methods for causal brain mapping. Whereas most previous clinical trials targeted the dorsolateral prefrontal cortex, accumulating data highlight the frontopolar cortex as a promising therapeutic target for transcranial brain stimulation in substance use disorders. This approach is supported by converging multimodal evidence, including lesion-based maps, functional MRI-based maps, tES studies, TMS studies, and dose-response relationships. This review highlights the importance of targeting the frontopolar area and tailoring the treatment according to interindividual variations in brain state and trait and electric field distribution patterns. This converging evidence supports the potential for treatment optimization through context, target, dose, and timing dimensions to improve clinical outcomes of transcranial brain stimulation in people with substance use disorders in future clinical trials.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estimulação Magnética Transcraniana/métodos , Encéfalo , Transtornos Relacionados ao Uso de Substâncias/terapia , Córtex Pré-Frontal
9.
bioRxiv ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38045400

RESUMO

Notwithstanding advances with low-intensity transcranial electrical stimulation (TES), there remain questions about the efficacy of clinically realistic electric fields on neuronal function. We used Neuropixels 2.0 probe with 384 channels in an in-vivo rat model of TES to detect effects of weak fields on neuronal firing rate. High-density field mapping and computational models verified field intensity (1 V/m in hippocampus per 50 µA of applied skull currents). We demonstrate that electric fields below 0.5 V/m acutely modulate firing rate in 5% of neurons recorded in the hippocampus. At these intensities, average firing rate effects increased monotonically with electric field intensity at a rate of 7 % per V/m. For the majority of excitatory neurons, firing increased for cathodal stimulation and diminished for anodal stimulation. While more diverse, the response of inhibitory neurons followed a similar pattern on average, likely as a result of excitatory drive. Our results indicate that responses to TES at clinically relevant intensities are driven by a fraction of high-responder excitatory neurons, with polarity-specific effects. We conclude that transcranial electric stimulation is an effective neuromodulator at clinically realistic intensities.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38074313

RESUMO

Background: Opioid Use Disorder (OUD) is an escalating public health problem with over 100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and OUD with potentially widespread applications. Methods: This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging literature of nVNS for the application of OUD. Literature databases for Pubmed, Psychinfo, and Medline were queried for these topics for 1982-present. Results: Opioid withdrawal in the context of OUD is associated with activation of peripheral sympathetic and inflammatory systems as well as alterations in central brain regions including anterior cingulate, basal ganglia, and amygdala. NVNS has the potential to reduce sympathetic and inflammatory activation and counter the effects of opioid withdrawal in initial pilot studies. Preliminary studies show that it is potentially effective at acting through sympathetic pathways to reduce the effects of opioid withdrawal, in addition to reducing pain and distress. Conclusions: NVNS shows promise as a non-medication approach to OUD, both in terms of its known effect on neurobiology as well as pilot data showing a reduction in withdrawal symptoms as well as physiological manifestations of opioid withdrawal.

11.
Front Psychiatry ; 14: 1199773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674552

RESUMO

Transcranial direct current stimulation (tDCS) is an emerging treatment for major depression. We recruited participants with moderate-to-severe major depressive episodes for an observational clinical trial using Soterix Medical's tDCS telehealth platform as a standard of care. The acute intervention consisted of 28 sessions (5 sessions/week, 6 weeks) of the left anodal dorsolateral prefrontal cortex (DLPFC) tDCS (2.0 mA × 30 min) followed by a tapering phase of weekly sessions for 4 weeks (weeks 7-10). The n = 16 completing participants had a significant reduction in depressive symptoms by week 2 of treatment [Montgomery-Åsberg Depression Rating Scale (MADRS), Baseline: 28.00 ± 4.35 vs. Week 2: 17.12 ± 5.32, p < 0.001] with continual improvement across each biweekly timepoint. Acute intervention responder and remission rates were 75 and 63% and 88 and 81% following the taper period (week 10).

12.
Brain Stimul ; 16(5): 1328-1335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37660936

RESUMO

BACKGROUND: Few studies have investigated tolerability, blinding, and double-blinding of High-Definition transcranial Direct Current Stimulation (HD-tDCS) at amplitudes above 2 milliamps (mA). OBJECTIVE: We examined a) tolerability of HD-tDCS during stimulation sessions and b) blinding and double blinding of participants and study team members. METHODS: Data from a mixed neurologic sample of 292 older adults were pooled from 3046 HD-tDCS sessions (2329 active; 717 sham). Per electrode amplitudes ranged from 1 mA to 4 mA with total currents up to 10 mA. Participants completed a standardized sensation (tolerability) questionnaire after each session. Participants and study team members stated whether the participant received active or sham stimulation at the end of various sessions. Data were collapsed into the presence/absence of a symptom due to low rates of positive responding and were analyzed for both differences and bioequivalency. RESULTS: There were no safety-related adverse events. HD-tDCS was well tolerated with mostly no ("none") or "mild" sensations reported across sessions, regardless of active or sham condition and in both stimulation naïve and experienced participants. There were no significant differences in side effects between active and sham, with some achieving bioequivalence. Tingling and itching were significantly more common after lower (<2 mA) than higher (≥3 mA) amplitude active sessions, while skin redness was significantly more common after higher amplitudes. Blinding was effective at the participant and study team levels. CONCLUSIONS: HD-tDCS was well tolerated with center electrode amplitudes up to 4 mA. The bimodal ramp-up/down format of the sham was effective for blinding. These results support higher scalp-based amplitudes that enable greater brain-based current intensities in older adults.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo , Prurido/etiologia , Couro Cabeludo , Eletrodos
13.
Neuromodulation ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37598327

RESUMO

OBJECTIVES: When administered in repeated daily doses, transcranial direct current stimulation (tDCS) directed to the prefrontal cortex has cumulative efficacy for the treatment of depression. Depression can be marked by altered processing of emotionally salient information. An acute marker of response to tDCS may be measured as an immediate change in emotional information processing. Using an easily administered web-based task, we tested immediate changes in emotional information processing in acute response to tDCS in participants with and without depression. MATERIALS AND METHODS: We enrolled n = 21 women with mild-to-moderate depression and n = 20 controls without depression to complete a web-based visual search task before and after 30 minutes of tDCS directed to the prefrontal cortex. The timed task required participants to identify a target face among arrays showing sad, neutral, or mixed (distractor) expressions. RESULTS: At baseline, as predicted, the participants with depression differed from those without in emotional processing speed (mean z score difference -0.66 ± 0.27, p = 0.022) and accuracy in identifying sad stimuli (error rate: 4.4% vs 1.8%, p = 0.039). In response to tDCS, the participants with depression became significantly faster on the distractor condition (pre- vs post-tDCS z scores: -0.45 ± 0.65 vs -0.85 ± 0.65, p = 0.009), suggesting a specific reduction in bias toward negative emotional information. In response to tDCS, the depressed group also had significant improvements in self-reported mood (increased happy, decreased sad and anxious mood). CONCLUSIONS: Participants with depression vs those without were differentiated by their performance of the visual search task at baseline and in response to tDCS. Given that measurable effects on depression scales may require weeks of tDCS treatments, acute change in emotional information processing can serve as an easily obtainable marker of depression and its response to tDCS. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT05188248.

14.
Transl Psychiatry ; 13(1): 279, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582922

RESUMO

One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.


Assuntos
Doenças do Sistema Nervoso , Estimulação Transcraniana por Corrente Contínua , Humanos , Encéfalo , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Estimulação Elétrica
15.
Neurosci Biobehav Rev ; 152: 105300, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392815

RESUMO

Interest in neurostimulation interventions has significantly grown in recent decades, yet a scientometric analysis objectively mapping scientific knowledge and recent trends remains unpublished. Using relevant keywords, we conducted a search in the Web of Science Core Collection on September 23, 2022, retrieving a total of 47,681 documents with 987,979 references. We identified two prominent research trends: 'noninvasive brain stimulation' and 'invasive brain stimulation.' These methods have interconnected over time, forming a cluster focused on evidence synthesis. Noteworthy emerging research trends encompassed 'transcutaneous auricular vagus nerve stimulation,' 'DBS/epilepsy in the pediatric population,' 'spinal cord stimulation,' and 'brain-machine interface.' While progress has been made for various neurostimulation interventions, their approval as adjuvant treatments remains limited, and optimal stimulation parameters lack consensus. Enhancing communication between experts of both neurostimulation types and encouraging novel translational research could foster further development. These findings offer valuable insights for funding agencies and research groups, guiding future directions in the field.


Assuntos
Estimulação Encefálica Profunda , Epilepsia , Estimulação do Nervo Vago , Criança , Humanos , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia
16.
J Neural Eng ; 20(4)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37413982

RESUMO

Objective. Transcranial direct current stimulation (tDCS) generates sustained electric fields in the brain, that may be amplified when crossing capillary walls (across blood-brain barrier, BBB). Electric fields across the BBB may generate fluid flow by electroosmosis. We consider that tDCS may thus enhance interstitial fluid flow.Approach. We developed a modeling pipeline novel in both (1) spanning the mm (head),µm (capillary network), and then nm (down to BBB tight junction (TJ)) scales; and (2) coupling electric current flow to fluid current flow across these scales. Electroosmotic coupling was parametrized based on prior measures of fluid flow across isolated BBB layers. Electric field amplification across the BBB in a realistic capillary network was converted to volumetric fluid exchange.Main results. The ultrastructure of the BBB results in peak electric fields (per mA of applied current) of 32-63Vm-1across capillary wall and >1150Vm-1in TJs (contrasted with 0.3Vm-1in parenchyma). Based on an electroosmotic coupling of 1.0 × 10-9- 5.6 × 10-10m3s-1m2perVm-1, peak water fluxes across the BBB are 2.44 × 10-10- 6.94 × 10-10m3s-1m2, with a peak 1.5 × 10-4- 5.6 × 10-4m3min-1m3interstitial water exchange (per mA).Significance. Using this pipeline, the fluid exchange rate per each brain voxel can be predicted for any tDCS dose (electrode montage, current) or anatomy. Under experimentally constrained tissue properties, we predicted tDCS produces a fluid exchange rate comparable to endogenous flow, so doubling fluid exchange with further local flow rate hot spots ('jets'). The validation and implication of such tDCS brain 'flushing' is important to establish.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Transcraniana por Corrente Contínua/métodos , Água , Encéfalo/fisiologia , Cabeça , Física
17.
JAMA Netw Open ; 6(6): e2319231, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342040

RESUMO

Importance: Cathodal transcranial direct current stimulation (C-tDCS) provides neuroprotection in preclinical models of acute ischemic stroke (AIS) by inhibiting peri-infarct excitotoxic effects and enhancing collateral perfusion due to its vasodilatory properties. Objective: To report the first-in-human pilot study using individualized high-definition (HD) C-tDCS as a treatment of AIS. Design, Setting, and Participants: This randomized clinical trial was sham controlled with 3 + 3 dose escalation design, and was conducted at a single center from October 2018 to July 2021. Eligible participants were treated for AIS within 24 hours from onset, had imaging evidence of cortical ischemia with salvageable penumbra, and were ineligible for reperfusion therapies. HD C-tDCS electrode montage was selected for each patient to deliver the electric current to the ischemic region only. Patients were followed for 90 days. Main Outcomes and Measures: Primary outcomes were feasibility, assessed as time from randomization to study stimulation initiation; tolerability, assessed by rate of patients completing the full study stimulation period; and safety, assessed by rates of symptomatic intracranial hemorrhage at 24 hours. The efficacy imaging biomarkers of neuroprotection and collateral enhancement were explored. Results: A total of 10 patients with AIS were enrolled, 7 were randomized to active treatment and 3 to sham. Patient age was mean (SD) 75 (10) years old, 6 (60%) were female, and National Institutes of Health Stroke Scale score was mean (SD) 8 (7). Two doses of HD C-tDCS (1 milliamp [mA] for 20 minutes and 2 mA for 20 minutes) were studied. The speed of HD C-tDCS implementation was a median (IQR) 12.5 minutes (9-15 minutes) in the last 4 patients. Patients tolerated the HD C-tDCS with no permanent stimulation cessation. The hypoperfused region was reduced by a median (IQR) 100% (46% to 100%) in the active group vs increased by 325% (112% to 412%) in sham. Change in quantitative relative cerebral blood volume early poststimulation was a median (IQR) 64% (40% to 110%) in active vs -4% (-7% to 1%) sham patients and followed a dose-response pattern. Penumbral salvage in the active C-tDCS group was median (IQR) 66% (29% to 80.5%) vs 0% (IQR 0% to 0%) in sham. Conclusion and Relevance: In this randomized, first-in-human clinical trial, HD C-tDCS was started efficiently and well tolerated in emergency settings, with signals of beneficial effect upon penumbral salvage. These results support advancing HD C-tDCS to larger trials. Trial Registration: ClinicalTrials.gov Identifier: NCT03574038.


Assuntos
AVC Isquêmico , Estimulação Transcraniana por Corrente Contínua , Estados Unidos , Humanos , Feminino , Idoso , Masculino , Estimulação Transcraniana por Corrente Contínua/efeitos adversos , Estimulação Transcraniana por Corrente Contínua/métodos , AVC Isquêmico/etiologia , Projetos Piloto , Terapia Combinada
19.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130780

RESUMO

Spinal cord stimulation (SCS) evokes fast epidural evoked compound action potential (ECAP) that represent activity of dorsal column axons, but not necessarily a spinal circuit response. Using a multimodal approach, we identified and characterized a delayed and slower potential evoked by SCS that reflects synaptic activity within the spinal cord. Anesthetized female Sprague Dawley rats were implanted with an epidural SCS lead, epidural motor cortex stimulation electrodes, an epidural spinal cord recording lead, an intraspinal penetrating recording electrode array, and intramuscular electromyography (EMG) electrodes in the hindlimb and trunk. We stimulated the motor cortex or the epidural spinal cord and recorded epidural, intraspinal, and EMG responses. SCS pulses produced characteristic propagating ECAPs (composed of P1, N1, and P2 waves with latencies <2 ms) and an additional wave ("S1") starting after the N2. We verified the S1-wave was not a stimulation artifact and was not a reflection of hindlimb/trunk EMG. The S1-wave has a distinct stimulation-intensity dose response and spatial profile compared with ECAPs. 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective competitive antagonist of AMPA receptors (AMPARs)] significantly diminished the S1-wave, but not ECAPs. Furthermore, cortical stimulation, which did not evoke ECAPs, produced epidurally detectable and CNQX-sensitive responses at the same spinal sites, confirming epidural recording of an evoked synaptic response. Finally, applying 50-Hz SCS resulted in dampening of S1-wave but not ECAPs. Therefore, we hypothesize that the S1-wave is synaptic in origin, and we term the S1-wave type responses: evoked synaptic activity potentials (ESAPs). The identification and characterization of epidurally recorded ESAPs from the dorsal horn may elucidate SCS mechanisms.


Assuntos
Estimulação da Medula Espinal , Ratos , Animais , Feminino , Estimulação da Medula Espinal/métodos , Ratos Sprague-Dawley , 6-Ciano-7-nitroquinoxalina-2,3-diona , Medula Espinal/fisiologia , Corno Dorsal da Medula Espinal , Potenciais Evocados/fisiologia , Potenciais de Ação/fisiologia , Estimulação Elétrica
20.
Brain Stimul ; 16(3): 840-853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201865

RESUMO

The objective and scope of this Limited Output Transcranial Electrical Stimulation 2023 (LOTES-2023) guidance is to update the previous LOTES-2017 guidance. These documents should therefore be considered together. The LOTES provides a clearly articulated and transparent framework for the design of devices providing limited output (specified low-intensity range) transcranial electrical stimulation for a variety of intended uses. These guidelines can inform trial design and regulatory decisions, but most directly inform manufacturer activities - and hence were presented in LOTES-2017 as "Voluntary industry standard for compliance controlled limited output tES devices". In LOTES-2023 we emphasize that these standards are largely aligned across international standards and national regulations (including those in USA, EU, and South Korea), and so might be better understood as "Industry standards for compliance controlled limited output tES devices". LOTES-2023 is therefore updated to reflect a consensus among emerging international standards, as well as best available scientific evidence. "Warnings" and "Precautions" are updated to align with current biomedical evidence and applications. LOTES standards applied to a constrained device dose range, but within this dose range and for different use-cases, manufacturers are responsible to conduct device-specific risk management.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Gestão de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...